Obdobje poteka: 01. 04. 2019 – 30. 11. 2021

Nosilec projekta: izr. prof. dr. Zoran Levnajić

Vrsta projekta: znanstveno raziskovalni projekt

—-

Dvo-dimenzionalni materiali (od ene do nekaj atomskih plasti debeline) predstavljajo velik potencial za tehnološke aplikacije. V preteklih letih smo bili priča trem velikim valovom na tem področju: grafen, dvo-dimenzionalni dikalcogenidi prehodnih kovin, in fosforen. Pričakujemo, da bo naslednji val povezan z antimonom in germanijem.

Glavni cilj projekta 2D-Sb&Ge je razumeti načine za izdelavo in uporabo dvo-dimenzionalnih matetrialov na bazi antimona in germanija. To vključuje preučevanje njihovih fizikalnih in kemijskih lastnosti ter študijo možnosti za industrijsko uporabo. Projekt 2D-Sb & Ge je strukturiran v treh glavnih stebrih:

  1. Proizvodnja omenjenih materialov, vključno z njihovo kemijsko funkcionalizacijo.
  2. Eksperimentalne študije fizikalnih in kemičnih lastnosti materialov.
  3. Teoretično oz. računalniško modeliranje za dizajn novih eksperimentov.

Slovenski del projekta je v glavnem osredotočen na tretji steber, kjer so preliminarni teoretični izračuni, ki so jih izvedli partnerji tega konzorcija (pred začetkom tega projekta), zelo obetavni.

Končni cilj projekta je oceniti eksperimentalne pogoje za proizvodnjo večplastnega germanija in antimona v širšem (industrijskem) obsegu.

Projekt je po Technology Readyness Level-u (TRL) na stopnji 2-4. Predvidevamo aplikacije v kontekstu energetike (superkondenzatorji, razdeljevanje vode, redukcija kisika itd.) ter za v kontekstu izdelave prototipov optoelektronskih naprav. Teoretični izračuni bodo uporabljeni in bodo pomagali tudi pri oblikovanju prihodnjih dvo-dimenzionalnih materialov.

 

Two-dimensional (2D) materials (from one up to few atomic layers in thickness) present a huge potential for technological applications. Over the past 12 years we have witnessed 3 major activity waves in this area: Graphene, 2D transition-metal dichalcogenides, and phosphorene. We anticipate the next waves to be related to two elemental materials: Antimony and Germanium. Consequently, the main goal of 2D-Sb&Ge is to provide the research community with the understanding of the properties and the basics to fabricate and make use of novel 2D materials based on these two elements. This also includes the study of their physical and chemical properties including supramolecular and/or covalent functionalization to produce a series of band gap tunable devices.

Graphene is a semimetal with zero gap which precludes it from being useful for many applications in (opto)electronics. A number of theoretical works have predicted antimony to be a promising material for optoelectronic applications due to the band gap opening when thinned down to one atomic layer. In addition, it has also been predicted to exhibit non-trivial topological character and protected conducting surface states in its few-layer form. Members of this consortium have demonstrated, for the first time that antimony can be exfoliated by micromechanical and liquid phase techniques and have characterized the resulting 2D flakes from a structural morphological point of view. In particular we have shown that, unlike black phosphorus, single layers of antimonene are stable in atmospheric conditions. Electrical characterization and theoretical work in this regard are currently under way.

The second 2D material, recently produced in our labs and which also features very promising optoelectronic properties, is a 2D form of alpha-germanium (2D-α-Ge), not to be mistaken with germanene, the hexagonal form that only grows on metallic surfaces. Theoretical calculations carried out by a member of this consortium predict exciting electrical properties such as a strong band gap tuning as a function of the thickness.

The 2D-Sb&Ge project is structured in three different interconnected lines:

i) Materials production including their chemical functionalization and structural/morphological characterization.
ii) Experimental studies of their physical properties.
iii) Theoretical modelling for design and rationalization of experimental results.

We plan to evaluate the experimental conditions to produce few-layer (FL) germanium and antimonene at a large scale and the possibility of chemical functionalization of the latter. We foresee applications in the context of energy (supercapacitor, water splitting, oxygen reduction, etc.) as well as in prototypes of optoelectronic devices. Theoretical calculations will be used to rationalize their physical and chemical properties and will aid in future materials design.